Exercise 14

(a) What quantities are given in the problem?
(b) What is the unknown?
(c) Draw a picture of the situation for any time t.
(d) Write an equation that relates the quantities.
(e) Finish solving the problem.

If a snowball melts so that its surface area decreases at a rate of $1 \mathrm{~cm}^{2} / \mathrm{min}$, find the rate at which the diameter decreases when the diameter is 10 cm .

Solution

The rate that surface area is increasing $\left(d S / d t=-1 \mathrm{~cm}^{2} / \mathrm{min}\right)$ is given. The rate that D, the snowball's diameter, is increasing is unknown.

The relationship between S and radius R is given by

$$
S=4 \pi R^{2}
$$

Write it in terms of diameter.

$$
\begin{aligned}
& S=4 \pi\left(\frac{D}{2}\right)^{2} \\
& S=\pi D^{2}
\end{aligned}
$$

Differentiate both sides with respect to time.

$$
\frac{d S}{d t}=\frac{d}{d t}\left(\pi D^{2}\right)=\left(2 \pi D \cdot \frac{d D}{d t}\right)
$$

Solve for $d D / d t$, the rate that diameter increases with respect to time.

$$
\frac{d D}{d t}=\frac{1}{2 \pi D} \frac{d S}{d t}
$$

Therefore, the rate that D is increasing when $D=10$ is

$$
\left.\frac{d D}{d t}\right|_{D=10}=\frac{1}{2 \pi(10 \mathrm{~cm})}\left(-1 \frac{\mathrm{~cm}^{2}}{\min }\right)=-\frac{1}{20 \pi} \frac{\mathrm{~cm}}{\min } .
$$

